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Abstract—Large-scale HPC systems increasingly incorporate
sophisticated power management control mechanisms. While
these mechanisms are potentially useful for performing energy
and/or power-aware job scheduling and resource management
(EPA JSRM), greater understanding of their operation and
performance impact on real-world applications is required be-
fore they can be applied effectively in practice. In this paper,
we compare static p-state control to static node-level power
cap control on a Cray XC system. Empirical experiments are
performed to evaluate node-to-node performance and power
usage variability for the two mechanisms. We find that static p-
state control produces more predictable and higher performance
characteristics than static node-level power cap control at a
given power level. However, this performance benefit is at the
cost of less predictable power usage. Static node-level power cap
control produces predictable power usage but with more variable
performance characteristics. Our results are not intended to
show that one mechanism is better than the other. Rather, our
results demonstrate that the mechanisms are complementary to
one another and highlight their potential for combined use in
achieving effective EPA JSRM solutions.

I. INTRODUCTION

Large-scale HPC systems increasingly incorporate sophis-
ticated power management control mechanisms. While these
mechanisms are potentially useful for performing energy
and/or power-aware job scheduling and resource management
(EPA JSRM) [12], [4], greater understanding of their operation
and performance impact on real-world applications is required
before they can be applied effectively in practice.

In this short paper, we compare static p-state control to static
node-level power cap control on a Cray XC HPC system.
Empirical experiments are performed to evaluate node-to-
node performance and power usage variability for two key
benchmark workloads running under these two power control
mechanisms. Additionally, we apply static node-level power
caps to a complex, real-world application and demonstrate that
its performance is not significantly impacted so long as the
power cap is set at an appropriate level.
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Overall, we find that static node-level power cap control is
complementary to p-state control, and that both are applicable
for use in EPA JSRM. We anticipate the results of our
study may be of interest to vendors and practitioners working
on EPA JSRM solutions, and could help pave the way for
increased usage of node-level power capping.

The remainder of this paper is organized as follows: Sec-
tion II briefly describes the two power control mechanisms
examined: node-level power capping and p-state control. Next,
Section III presents the results of our node-to-node variability
study, highlighting the differences between the mechanisms.
Section IV details our experience applying the mechanisms
to the SPARC application running on 32 nodes. Finally, we
conclude in Section VI and discuss directions for future work.

II. BACKGROUND

The Cray XC implements node-level power capping using
Intel Node Manager [11]. This capability leverages and is
related to Intel RAPL [10], however its semantics and control
model are different. Specifically, it allows a single power
budget to be set for an entire node and it is controlled via
an out-of-band management channel. A system administrator
or privileged system software component like the workload
manager can unilaterally decide to reduce the power budget
of an individual node, job, or the system as a whole, with no
interaction or support needed by the software running on the
affected nodes.

RAPL, in contrast, requires in-band support by system
software running on the targeted compute nodes and requires
that separate power budgets be set for each individual sub-
system (e.g., each CPU socket, each CPU package, memory),
rather than a single value for the entire node. RAPL does not
provide a way to set a single power budget for the entire
node and does not try to dynamically shift power budget
between the subsystems within a node. This functionality must
be implemented by in-band system software running on the
compute node that is actuating the RAPL control registers.

Node Manager, in contrast, implements its power control
algorithm in the chipset firmware and dynamically shifts power
budget among subsystems based on power measurements
and other feedback, such as resource utilization and thermal



measurements. This functionality makes Node Manager based
power capping convenient for use by EPA JSRM workload
managers.

Additional details are provided in prior work [16].

III. NODE-TO-NODE VARIABILITY UNDER POWER
CONTROL

In order to better understand the runtime behavior of node-
level power capping, single node experiments were performed
on each of the 100 Intel Haswell compute nodes of the Mutrino
Cray XC40 system at Sandia. For each node, we ran the
Top500 [14] workloads–HPL [1] and HPCG [7]–while sweep-
ing the p-state (CPU frequency) and node-level power cap
configuration spaces individually. Cray’s out-of-band power
measurement infrastructure, which does not affect application
runtime, was used to measure the node-level average power
draw for each run. Each test was performed with a static p-state
or node-level power cap set for the entire duration of the run
and each configuration was tested five times, with the averages
plotted in Figure 1. Each point in the figure represents a single-
node, with 100 dots in each cluster (color) representing the
100 separate compute nodes tested at a given configuration.
The p-state configuration space for the Haswell compute nodes
used for these experiments ranged from a maximum setting
of ‘Turbo On’, representing a base frequency of 2.3 GHz
with turbo up to 3.6 GHz, to a minimum setting of 1.2 GHz.
The node-level power cap configuration space ranged from a
maximum setting of ‘No Cap’, representing a nominal 415 W
power budget per node, to a minimum setting of 230 W power
budget per node.

As can be seen in the left column of Figure 1, p-state control
demonstrates highly similar performance across nodes with
variable power consumption, which is highly dependent on
the workload being evaluated. P-state frequencies above 1.9
GHz enable Turbo Boost, which opportunistically scales clock
frequency higher based on thermal and power headroom. This
results in the high levels of performance variability observed
for HPL with these configurations. HPCG is more memory
intensive, resulting in relatively lower performance variation
across nodes when running in configurations with Turbo Boost
active.

In contrast, node-level power cap control (right column
of Figure 1) results in variable performance across nodes
with relatively constant power draw for a given configuration.
For power cap configurations of 359 W to 415 W, there is
enough power headroom for Turbo Boost to operate, leading
to more variability among the different nodes. At lower power
cap settings, 341 W and below, both workloads demonstrate
very regular power draw across nodes with relatively larger
variations in performance compared to p-state control.

These results clearly highlight the difference in behavior
between p-state control and node-level power cap control. P-
state control is highly effective at delivering a desired level of
performance (excluding Turbo Boost configurations), but has
the drawback of unpredictable power draw. Furthermore, this
power draw is highly workload dependent and it is difficult for

a workload manager to predict ahead of time what this power
draw will be.

Node-level power cap control is highly effective at keeping
the node’s power draw at or below the desired power cap
setting, but this leads to unpredictable application perfor-
mance. As the desired power cap setting is lowered beyond an
application’s normal power draw, it has an increasingly larger
impact on performance. Furthermore, this performance impact
is highly variable across nodes. For example, for HPCG there
is an 11% difference from the slowest node to the fastest node
at the 230 W power cap configuration, while with no cap there
is negligible performance difference between nodes. While the
predictable power usage is convenient for workload managers
to work with, it is difficult to predict ahead of time how a
give power cap setting will impact the performance of a given
workload.

From these single-node results, it appears that so long as
the node level power cap is set higher than the application’s
natural uncapped (‘No Cap’) power draw, its performance is
not significantly impacted. In the next section we examine this
in more detail, setting the node-level power cap according to
an application’s observed uncapped power draw.

IV. SPARC APPLICATION UNDER POWER CONTROL

SPARC [8] is a next-generation compressible computa-
tional fluid dynamics code being developed by Sandia. It
is a key workload at Sandia and has been heavily opti-
mized for execution on the Trinity [6] Cray XC40 Haswell
and Knights Landing compute nodes that we evaluated.
We ran the “Generic Reentry Vehicle” (GRV) input prob-
lem configured for 1024 MPI processes running on 32
compute nodes, configured for the best known performing
configuration (OMP NUM THREADS=1 on Haswell and
OMP NUM THREADS=8 on Knights Landing).

First, we used the Cray XC power measurement infrastruc-
ture to capture 5 Hz node-level power samples for each of
the 32 nodes running SPARC in an uncapped configuration.
The black curves in Figure 2 show the uncapped traces for
32 nodes of each node type (also shown in different colors
are runs with power caps set at 50%, 25% and 0% of the
valid power cap range for each node type). We then analyzed
these uncapped samples to calculate statistics including the
maximum power value recorded, the 95th percentile across all
samples recorded on all nodes, the 75th percentile, 50th per-
centile, 25th percentile, and minimum power value recorded.

With these statistics calculated, we re-ran SPARC with
static node-level power caps set at each calculated value and
additionally at the lowest possible power cap setting for each
node type (230 W for Haswell, 200 W for Knights Landing).
Figure 3 summarizes the results of these experiments along
with results for static p-state configurations. Each point is
labeled with the power cap value in watts (red curve) or p-state
frequency in GHz (black curve).

For Haswell nodes, there is little performance impact when
capping at the 25th percentile (354 W) and higher. This
demonstrates that capping near or above SPARC’s natural
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Fig. 1. Node-to-node variability in terms of performance vs. power for various static p-state configurations (left) and static power cap configurations (right).

power usage does not cause significant performance degrada-
tion. This matches our previous experience that the node-level
power capping mechanism only seems to be triggered when
average power draw exceeds the desired limit for approxi-
mately 1 second [16]. Capping at lower levels, for example
276 W and 230 W on Haswell, leads to the capping mechanism
being frequently triggered. As can be seen in the figure, this
results in lower performance than using p-state control for a
given measured average node-level power draw on the x-axis.

For Knights Landing nodes, there is a more noticeable
performance penalty when power capping at SPARC’s natural
power usage levels. Capping at the 75th percentile (277 W)
and below leads to reduced performance compared to static p-
state control. Furthermore, we observed that capping far below
that level, for example below the 5th percentile of uncapped
power samples (241 W), led to node crashes. We are still
investigating the cause of these crashes.

Figure 2 show point-in-time power plots for several of the
node-level power cap configurations tested. The power cap
mechanism is visible as acting to reduce power at application

startup time (far left) and then maintains a relatively steady
power draw for the remainder of the run. The 200 W cap
configuration for KNL failed shortly after startup.

V. RELATED WORK

In HPC, RAPL power capping has been examined [18] and
used to explore hardware overprovisioning approaches [15],
[20]. Part-to-part performance variability has been identified
as an issue when running under power capping, and various
solutions have been devised to mitigate [2], [9], [17]. Finally,
several intelligent power and/or energy-aware runtime systems
use RAPL to enforce component-level power bounds [19], [5],
[13], [3]. Our work examines node-level power capping via
Intel Node Manager, which as discussed earlier is related to
but different than RAPL. Node Manager power cap control
is not as well understood by the EPA JSRM community as
other mechanisms, such as DVFS and RAPL, however given
the wide availability of Node Manager on recent Intel server
platforms, it is becoming increasingly suitable for inclusion in
general-purpose EPA JSRM solutions. Our work contributes
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Fig. 2. Point-in-time 5 Hz power measurement for SPARC application running GRV problem on 32 nodes.
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Fig. 3. Comparison of SPARC application running GRV problem on 32 nodes under static p-state control vs. static node-level power cap control.

to the body of experience needed to deploy node-level power
capping in practice on production systems.

VI. CONCLUSION

Our results are not intended to show that one mechanism is
better than the other. Rather, our results demonstrate that the
two mechanisms examined are complementary to one another
and highlight their potential for combined use in achieving
effective EPA JSRM solutions. Future work will use the
knowledge gained from this study to implement EPA JSRM

solutions utilizing node level power capping capabilities. This
study has given us confidence that node-level power capping
can be used with minimal application performance impact
so long as cap levels are set appropriately. We envision an
EPA JSRM workload manager that provisions coarse-grained
power budgets via node-level power capping, with dynamic
readjustment over time based on power monitoring, and then
relying on faster response time mechanisms, such as in-band
DVFS and RAPL control, at the runtime system level to
manage power usage within these coarse limits.
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